MAL decreases the internalization of the aquaporin-2 water channel.

نویسندگان

  • Erik-Jan Kamsteeg
  • Amy S Duffield
  • Irene B M Konings
  • Joanna Spencer
  • Philipp Pagel
  • Peter M T Deen
  • Michael J Caplan
چکیده

Body water homeostasis depends critically on the hormonally regulated trafficking of aquaporin-2 (AQP2) water channels in renal collecting duct epithelial cells. Several types of posttranslational modifications are clearly involved in controlling the distribution of AQP2 between intracellular vesicles and the apical plasma membrane. Little is known, however, about the protein interactions that govern the trafficking of AQP2 between these organelles. MAL is a detergent-resistant membrane-associated protein implicated in apical sorting events. We wondered, therefore, whether MAL plays a role in the regulated trafficking of AQP2 between intracellular vesicles and the apical surface. We find that AQP2 and MAL are coexpressed in epithelial cells of the kidney collecting duct. These two proteins interact, both in the native kidney and when expressed by transfection in cultured cells. The S256-phosphorylated form of AQP2 appears to interact more extensively with MAL than does the water channel protein not phosphorylated at this serine. We find that MAL is not involved in detergent-resistant membrane association or apical delivery of AQP2 in LLC-PK(1) renal epithelial cells. Instead, MAL increases the S256 phosphorylation and apical surface expression of AQP2. Furthermore, internalization experiments show that MAL induces surface expression of AQP2 by attenuating its internalization. Thus, the involvement of MAL in the cell surface retention of apical membrane proteins could play an important role in regulated absorption and secretion in transporting epithelia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular Dynamics Simulation of Water Transportation through Aquaporin-4 in Rat Brain Cells

This paper investigates the mechanism of water transportation through aquaporin-4(AQP4) of ratbrain cells by means of molecular dynamics simulation with CHARMM software. The AQP4 wasembedded into a bilayer made of Dimystroilphosphatylcholine (DMPC). The results illustrate thatwater molecules move through AQP4's channel with change of orientation of oxygen of eachwater molecule.

متن کامل

Microtubules are needed for the perinuclear positioning of aquaporin-2 after its endocytic retrieval in renal principal cells.

Water reabsorption in the renal collecting duct is regulated by arginine vasopressin (AVP). AVP induces the insertion of the water channel aquaporin-2 (AQP2) into the plasma membrane of principal cells, thereby increasing the osmotic water permeability. The redistribution of AQP2 to the plasma membrane is a cAMP-dependent process and thus a paradigm for cAMP-controlled exocytic processes. Using...

متن کامل

Close Association of Aquaporin-2 Internalization with Caveolin-1

Aquaporin 2 (AQP2) is a membrane water channel protein that traffics between the intracellular membrane compartment and the plasma membrane in a vasopressin-dependent manner in the renal collecting duct cell to control the amount of water reabsorption. We examined the relation between AQP2 internalization from the plasma membrane and caveolin-1, which is a major protein in membrane microdomain ...

متن کامل

Counteracting vasopressin-mediated water reabsorption by ATP, dopamine, and phorbol esters: mechanisms of action.

Water homeostasis is regulated by a wide variety of hormones. When in need for water conservation, vasopressin, released from the brain, binds renal principal cells and initiates a signaling cascade resulting in the insertion of aquaporin-2 (AQP2) water channels in the apical membrane and water reabsorption. Conversely, hormones, including extracellular purines and dopamine, antagonize AVP-indu...

متن کامل

Short-chain ubiquitination mediates the regulated endocytosis of the aquaporin-2 water channel.

To regulate mammalian water homeostasis, arginine-vasopressin (AVP) induces phosphorylation and thereby redistribution of renal aquaporin-2 (AQP2) water channels from vesicles to the apical membrane. Vice versa, AVP (or forskolin) removal and hormones activating PKC cause AQP2 internalization, but the mechanism is unknown. Here, we show that a fraction of AQP2 is modified with two to three ubiq...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 104 42  شماره 

صفحات  -

تاریخ انتشار 2007